1,947 research outputs found

    Development and Verification for the Control Method Using Surplus Pressure of Primary Pumps in Chiller Plant Systems for Air Conditioning which Adopts Primary/Secondary Piping Systems PPT

    Get PDF
    The primary/secondary piping systems are often employed in large chiller plant Systems. Normally, the primary flow becomes more than secondary flow, and the flow difference returns to a chiller via decoupler, which is common to primary flow loop (chiller side) and secondary flow loop (load side). It is a huge energy loss, because the primary pumps use their head to lead much flow to the decoupler. Therefore, we have developed new control method using surplus pressure of the primary pump to reduce the primary and secondary pumps' energy. In this paper, we used this control method to the actual chiller plant buildings and verified its effectiveness. As a result, cold water conveyances, both primary loop and secondary loop, could be covered by only primary pumps during plant operating time, and the water conveyance power energy was reduced approximately 80%

    Speech Communication

    Get PDF
    Contains research objectives and reports on two research objectives.U.S. Air Force (Air Force Cambridge Research Center, Air Research and Development Command) under Contract AF19(604)-6102National Science Foundatio

    Speech Communication

    Get PDF
    Contains reports on six research projects.U. S. Air Force Command and Control Development Division under Contract AF19(604)-6102National Science Foundatio

    Proton decay from the isoscalar giant dipole resonance in 58^{58}Ni

    Full text link
    Proton decay from the 3ω\hbar\omega isoscalar giant dipole resonance (ISGDR) in 58^{58}Ni has been measured using the (α,αp\alpha,\alpha'p) reaction at a bombarding energy of 386 MeV to investigate its decay properties. We have extracted the ISGDR strength under the coincidence condition between inelastically scattered α\alpha particles at forward angles and decay protons emitted at backward angles. Branching ratios for proton decay to low-lying states of 57^{57}Co have been determined, and the results compared to predictions of recent continuum-RPA calculations. The final-state spectra of protons decaying to the low-lying states in 57^{57}Co were analyzed for a more detailed understanding of the structure of the ISGDR. It is found that there are differences in the structure of the ISGDR as a function of excitation energy.Comment: Minor changes after review. Accepted for publication in Phys. Rev. C. 19 pages; 7 figure

    Phase II Trial of Preoperative Chemotherapy with Docetaxel, Cisplatin and S-1 for T4 Locally Advanced Gastric Cancer

    Get PDF
    The standard treatment for T4 locally advanced gastric cancer is gastrectomy with D2 lymph node dissection followed by adjuvant chemotherapy with S-1 for 12 months; however, prognostic outcome in Stage IIIb has been insufficient. It is expected that survival is improved by preoperative treatment with a triplet regimen of docetaxel, cisplatin and S-1 (divided DCS therapy). A multicenter Phase II study has been conducted to evaluate the safety and efficacy of two courses of preoperative chemotherapy followed by gastrectomy. Fifty-five patients are required for this study. The primary endpoint of the study is pathological response rate of primary lesions. Secondary endpoints are overall survival, disease-free survival, R0 resection rate and adverse events

    The Renormalization Group and Singular Perturbations: Multiple-Scales, Boundary Layers and Reductive Perturbation Theory

    Full text link
    Perturbative renormalization group theory is developed as a unified tool for global asymptotic analysis. With numerous examples, we illustrate its application to ordinary differential equation problems involving multiple scales, boundary layers with technically difficult asymptotic matching, and WKB analysis. In contrast to conventional methods, the renormalization group approach requires neither {\it ad hoc\/} assumptions about the structure of perturbation series nor the use of asymptotic matching. Our renormalization group approach provides approximate solutions which are practically superior to those obtained conventionally, although the latter can be reproduced, if desired, by appropriate expansion of the renormalization group approximant. We show that the renormalization group equation may be interpreted as an amplitude equation, and from this point of view develop reductive perturbation theory for partial differential equations describing spatially-extended systems near bifurcation points, deriving both amplitude equations and the center manifold.Comment: 44 pages, 2 Postscript figures, macro \uiucmac.tex available at macro archives or at ftp://gijoe.mrl.uiuc.edu/pu

    Multi-Orbital Molecular Compound (TTM-TTP)I_3: Effective Model and Fragment Decomposition

    Full text link
    The electronic structure of the molecular compound (TTM-TTP)I_3, which exhibits a peculiar intra-molecular charge ordering, has been studied using multi-configuration ab initio calculations. First we derive an effective Hubbard-type model based on the molecular orbitals (MOs) of TTM-TTP; we set up a two-orbital Hamiltonian for the two MOs near the Fermi energy and determine its full parameters: the transfer integrals, the Coulomb and exchange interactions. The tight-binding band structure obtained from these transfer integrals is consistent with the result of the direct band calculation based on density functional theory. Then, by decomposing the frontier MOs into two parts, i.e., fragments, we find that the stacked TTM-TTP molecules can be described by a two-leg ladder model, while the inter-fragment Coulomb energies are scaled to the inverse of their distances. This result indicates that the fragment picture that we proposed earlier [M.-L. Bonnet et al.: J. Chem. Phys. 132 (2010) 214705] successfully describes the low-energy properties of this compound.Comment: 5 pages, 4 figures, published versio

    Gamow-Teller Strengths of the Inverse-Beta Transition 176Yb --> 176Lu for Spectroscopy of Proton-Proton and other sub-MeV Solar Neutrinos

    Full text link
    Discrete Gamow-Teller (GT) transitions, 176Yb-->176Lu at low excitation energies have been measured via the (3He,t) reaction at 450 MeV and at 0 degrees. For 176Yb, two low-lying states are observed, setting low thresholds Q(neutrino)=301 and 445 keV for neutrino capture. Capture rates estimated from the measured GT strengths, the simple two-state excitation structure, and the low Q(neutrino) in Yb--Lu indicate that Yb-based neutrino-detectors are well suited for a direct measurement of the complete sub-MeV solar electron-neutrino spectrum (including pp neutrinos) where definitive effects of flavor conversion are expected

    Magnetic Fluctuations in a Charge Ordered State of the One-Dimensional Extended Hubbard Model with a Half-Filled Band

    Full text link
    Magnetic properties in a charge ordered state are examined for the extended Hubbard model at half-filling. Magnetic excitations, magnetic susceptibilities and a nuclear spin relaxation rate are calculated with taking account of fluctuations around the mean-field solution. The relevance of the present results to the observation in the 1:1 organic conductors, (TTM-TTP)I3_3, is discussed.Comment: 4 pages, 3 figures, to be published in J. Phys. Soc. Jpn. Vol.71 (2002) No.

    A novel missense mutation of SLC7A9 frequent in Japanese cystinuria cases affecting the C-terminus of the transporter

    Get PDF
    Cystinuria is caused by the inherited defect of apical membrane transport systems for cystine and dibasic amino acids in renal proximal tubules. Mutations in either SLC7A9 or SLC3A1 gene result in cystinuria. The mutations of SLC7A9 gene have been identified mainly from Italian, Libyan Jewish, North American, and Spanish patients. In the present study, we have analyzed cystinuria cases from oriental population (mostly Japanese). Mutation analyses of SLC7A9 and SLC3A1 genes were performed on 41 cystinuria patients. The uptake of 14C-labeled cystine in COS-7 cells was measured to determine the functional properties of mutants. The protein expression and localization were examined by Western blot and confocal laser-scanning microscopy. Among 41 patients analyzed, 35 were found to possess mutations in SLC7A9. The most frequent one was a novel missense mutation P482L that affects a residue near the C-terminus end of the protein and causes severe loss of function. In MDCK II and HEK293 cells, we found that P482L protein was expressed and sorted to the plasma membrane as well as wild type. The alteration of Pro482 with amino acids with bulky side chains reduced the transport function of b0,+AT/BAT1. Interestingly, the mutations of SLC7A9 for Japanese cystinuria patients are different from those reported for European and American population. The results of the present study contribute toward understanding the distribution and frequency of cystinuria-related mutations of SLC7A9
    corecore